Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Arch. Soc. Esp. Oftalmol ; 99(4): 165-168, abr. 2024. ilus
Artigo em Espanhol | IBECS | ID: ibc-232137

RESUMO

La cavitación intracoroidea es un hallazgo identificado con OCT descrito inicialmente en pacientes miopes, pero también aparece en pacientes no miopes. Puede presentarse tanto en el área peripapilar como en el polo posterior. El coloboma macular es un defecto del desarrollo embrionario del polo posterior, y en la OCT estructural es imprescindible la ausencia del epitelio pigmentario de la retina y de los vasos coroideos para su diagnóstico. Este caso presenta la cavitación intracoroidea circunscribiendo el coloboma macular, en ausencia de membrana intercalar. La imagen en face permite valorar la relación entre ambas estructuras, así como la magnitud de las mismas. (AU)


Intrachoroidal cavitation is a finding identified with OCT initially described in myopic patients, it also appears in non-myopic patients. It can occur in both the peripapillary area and the posterior pole. Macular coloboma is a defect of embryonic development of the posterior pole, in structural OCT the absence of the retinal pigment epithelium and choroidal vessels is essential. In this case, intrachoroidal cavitation circumscribes the macular coloboma, in the absence of an intercalary membrane. The face image allows us to assess the relationship between the two structures as well as their magnitude. (AU)


Assuntos
Humanos , Coloboma , Tomografia , Miopia Degenerativa , Cavitação , Oftalmologia
2.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610501

RESUMO

Multimodal sensors capture and integrate diverse characteristics of a scene to maximize information gain. In optics, this may involve capturing intensity in specific spectra or polarization states to determine factors such as material properties or an individual's health conditions. Combining multimodal camera data with shape data from 3D sensors is a challenging issue. Multimodal cameras, e.g., hyperspectral cameras, or cameras outside the visible light spectrum, e.g., thermal cameras, lack strongly in terms of resolution and image quality compared with state-of-the-art photo cameras. In this article, a new method is demonstrated to superimpose multimodal image data onto a 3D model created by multi-view photogrammetry. While a high-resolution photo camera captures a set of images from varying view angles to reconstruct a detailed 3D model of the scene, low-resolution multimodal camera(s) simultaneously record the scene. All cameras are pre-calibrated and rigidly mounted on a rig, i.e., their imaging properties and relative positions are known. The method was realized in a laboratory setup consisting of a professional photo camera, a thermal camera, and a 12-channel multispectral camera. In our experiments, an accuracy better than one pixel was achieved for the data fusion using multimodal superimposition. Finally, application examples of multimodal 3D digitization are demonstrated, and further steps to system realization are discussed.

3.
R Soc Open Sci ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601031

RESUMO

With the rapid development of medical imaging methods, multimodal medical image fusion techniques have caught the interest of researchers. The aim is to preserve information from diverse sensors using various models to generate a single informative image. The main challenge is to derive a trade-off between the spatial and spectral qualities of the resulting fused image and the computing efficiency. This article proposes a fast and reliable method for medical image fusion depending on multilevel Guided edge-preserving filtering (MLGEPF) decomposition rule. First, each multimodal medical image was divided into three sublayer categories using an MLGEPF decomposition scheme: small-scale component, large-scale component and background component. Secondly, two fusion strategies-pulse-coupled neural network based on the structure tensor and maximum based-are applied to combine the three types of layers, based on the layers' various properties. The three different types of fused sublayers are combined to create the fused image at the end. A total of 40 pairs of brain images from four separate categories of medical conditions were tested in experiments. The pair of images includes various case studies including magnetic resonance imaging (MRI) , TITc, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). We included qualitative analysis to demonstrate that the visual contrast between the structure and the surrounding tissue is increased in our proposed method. To further enhance the visual comparison, we asked a group of observers to compare our method's outputs with other methods and score them. Overall, our proposed fusion scheme increased the visual contrast and received positive subjective review. Moreover, objective assessment indicators for each category of medical conditions are also included. Our method achieves a high evaluation outcome on feature mutual information (FMI), the sum of correlation of differences (SCD), Qabf and Qy indexes. This implies that our fusion algorithm has better performance in information preservation and efficient structural and visual transferring.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38580555

RESUMO

Precise recognition of the intraparotid facial nerve (IFN) is crucial during parotid tumor resection. We aimed to explore the application effect of direct visualization of the IFN in parotid tumor resection. Fifteen patients with parotid tumors were enrolled in this study and underwent specific radiological scanning in which the IFNs were displayed as high-intensity images. After image segmentation, IFN could be preoperatively directly visualized. Mixed reality combined with surgical navigation were applied to intraoperatively directly visualize the segmentation results as real-time three-dimensional holograms, guiding the surgeons in IFN dissection and tumor resection. Radiological visibility of the IFN, accuracy of image segmentation and postoperative facial nerve function were analyzed. The trunks of IFN were directly visible in radiological images for all patients. Of 37 landmark points on the IFN, 36 were accurately segmented. Four patients were classified as House-Brackmann Grade I postoperatively. Two patients with malignancies had postoperative long-standing facial paralysis. Direct visualization of IFN was a feasible novel method with high accuracy that could assist in recognition of IFN and therefore potentially improve the treatment outcome of parotid tumor resection.

5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38483256

RESUMO

Numerous imaging techniques are available for observing and interrogating biological samples, and several of them can be used consecutively to enable correlative analysis of different image modalities with varying resolutions and the inclusion of structural or molecular information. Achieving accurate registration of multimodal images is essential for the correlative analysis process, but it remains a challenging computer vision task with no widely accepted solution. Moreover, supervised registration methods require annotated data produced by experts, which is limited. To address this challenge, we propose a general unsupervised pipeline for multimodal image registration using deep learning. We provide a comprehensive evaluation of the proposed pipeline versus the current state-of-the-art image registration and style transfer methods on four types of biological problems utilizing different microscopy modalities. We found that style transfer of modality domains paired with fully unsupervised training leads to comparable image registration accuracy to supervised methods and, most importantly, does not require human intervention.


Assuntos
Aprendizado Profundo , Humanos , Microscopia
6.
Chin J Traumatol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38548574

RESUMO

PURPOSE: Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods. METHODS: This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Non-normally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher's exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. RESULTS: A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time (p < 0.001), less blood loss (p < 0.001), better hematoma evacuation (p = 0.003), and a shorter stay in the intensive care unit (p = 0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group (p = 0.014). CONCLUSIONS: Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.

7.
BMC Med Inform Decis Mak ; 24(1): 65, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443881

RESUMO

BACKGROUND: Multimodal histology image registration is a process that transforms into a common coordinate system two or more images obtained from different microscopy modalities. The combination of information from various modalities can contribute to a comprehensive understanding of tissue specimens, aiding in more accurate diagnoses, and improved research insights. Multimodal image registration in histology samples presents a significant challenge due to the inherent differences in characteristics and the need for tailored optimization algorithms for each modality. RESULTS: We developed MMIR a cloud-based system for multimodal histological image registration, which consists of three main modules: a project manager, an algorithm manager, and an image visualization system. CONCLUSION: Our software solution aims to simplify image registration tasks with a user-friendly approach. It facilitates effective algorithm management, responsive web interfaces, supports multi-resolution images, and facilitates batch image registration. Moreover, its adaptable architecture allows for the integration of custom algorithms, ensuring that it aligns with the specific requirements of each modality combination. Beyond image registration, our software enables the conversion of segmented annotations from one modality to another.


Assuntos
Algoritmos , Software , Humanos
8.
J Imaging Inform Med ; 37(2): 575-588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343225

RESUMO

Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to "intelligentially generate" MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians' manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.

9.
Arch Soc Esp Oftalmol (Engl Ed) ; 99(4): 165-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309662

RESUMO

Intrachoroidal cavitation is a finding identified with OCT initially described in myopic patients, it also appears in non-myopic patients. It can occur in both the peripapillary area and the posterior pole. Macular coloboma is a defect of embryonic development of the posterior pole, in structural OCT the absence of the retinal pigment epithelium and choroidal vessels is essential. In this case, intrachoroidal cavitation circumscribes the macular coloboma, in the absence of an intercalary membrane. The en face image allows us to assess the relationship between the two structures as well as their magnitude.


Assuntos
Doenças da Coroide , Coloboma , Macula Lutea/anormalidades , Miopia , Humanos , Corioide/diagnóstico por imagem , Coloboma/diagnóstico por imagem , Doenças da Coroide/diagnóstico por imagem
10.
Anal Chim Acta ; 1283: 341969, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977791

RESUMO

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and histology plays a pivotal role in advancing our understanding of complex heterogeneous tissues, which provides a comprehensive description of biological tissue with both wide molecule coverage and high lateral resolution. Herein, we proposed a novel strategy for the correction and registration of MALDI MSI data with hematoxylin & eosin (H&E) staining images. To overcome the challenges of discrepancies in spatial resolution towards the unification of the two imaging modalities, a deep learning-based interpolation algorithm for MALDI MSI data was constructed, which enables spatial coherence and the following orientation matching between images. Coupled with the affine transformation (AT) and the subsequent moving least squares algorithm, the two types of images from one rat brain tissue section were aligned automatically with high accuracy. Moreover, we demonstrated the practicality of the developed pipeline by projecting it to a rat cerebral ischemia-reperfusion injury model, which would help decipher the link between molecular metabolism and pathological interpretation towards microregion. This new approach offers the chance for other types of bioimaging to boost the field of multimodal image fusion.


Assuntos
Algoritmos , Microscopia , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Coloração e Rotulagem
11.
Eur J Radiol ; 169: 111189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939605

RESUMO

PURPOSE: The objective of this study was to analyze the effect of TMJ disc position on condylar bone remodeling after arthroscopic disc repositioning surgery. METHODS: Nine patients with anterior disc displacement without reduction (ADDWoR, 15 sides) who underwent arthroscopic disc repositioning surgery were included. Three-dimensional (3D) reconstruction of the articular disc and the condyle in the closed-mouth position was performed using cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) data. Then, the CBCT and MRI images were fused and displayed together by multimodal image registration techniques. Morphological changes in the articular disc and condyle, as well as changes in their spatial relationship, were studied by comparing preoperative and 3-month postoperative CBCT-MRI fused images. RESULTS: The volume and superficial area of the articular disc, as well as the area of the articular disc surface in the subarticular cavity, were significantly increased compared to that before the surgical treatment(P < 0.01). There was also a significant increase in the volume of the condyle (P < 0.001). All condyles showed bone remodeling after surgery that could be categorized as one of two types depending on the position of the articular disc, suggesting that the location of the articular disc was related to the new bone formation. CONCLUSIONS: The morphology of the articular disc and condyle were significantly changed after arthroscopic disc repositioning surgery. The 3D changes in the position of the articular disc after surgery tended to have an effect on condylar bone remodeling and the location of new bone formation.


Assuntos
Luxações Articulares , Disco da Articulação Temporomandibular , Humanos , Disco da Articulação Temporomandibular/diagnóstico por imagem , Disco da Articulação Temporomandibular/cirurgia , Disco da Articulação Temporomandibular/patologia , Remodelação Óssea , Osso e Ossos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada de Feixe Cônico , Luxações Articulares/patologia , Articulação Temporomandibular , Côndilo Mandibular
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 1027-1032, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879934

RESUMO

In recent years, the incidence of thyroid diseases has increased significantly and ultrasound examination is the first choice for the diagnosis of thyroid diseases. At the same time, the level of medical image analysis based on deep learning has been rapidly improved. Ultrasonic image analysis has made a series of milestone breakthroughs, and deep learning algorithms have shown strong performance in the field of medical image segmentation and classification. This article first elaborates on the application of deep learning algorithms in thyroid ultrasound image segmentation, feature extraction, and classification differentiation. Secondly, it summarizes the algorithms for deep learning processing multimodal ultrasound images. Finally, it points out the problems in thyroid ultrasound image diagnosis at the current stage and looks forward to future development directions. This study can promote the application of deep learning in clinical ultrasound image diagnosis of thyroid, and provide reference for doctors to diagnose thyroid disease.


Assuntos
Aprendizado Profundo , Doenças da Glândula Tireoide , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Doenças da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia
13.
Cell Rep Methods ; 3(10): 100595, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741277

RESUMO

Imaging mass cytometry (IMC) is a powerful technique capable of detecting over 30 markers on a single slide. It has been increasingly used for single-cell-based spatial phenotyping in a wide range of samples. However, it only acquires a rectangle field of view (FOV) with a relatively small size and low image resolution, which hinders downstream analysis. Here, we reported a highly practical dual-modality imaging method that combines high-resolution immunofluorescence (IF) and high-dimensional IMC on the same tissue slide. Our computational pipeline uses the whole-slide image (WSI) of IF as a spatial reference and integrates small-FOV IMC into a WSI of IMC. The high-resolution IF images enable accurate single-cell segmentation to extract robust high-dimensional IMC features for downstream analysis. We applied this method in esophageal adenocarcinoma of different stages, identified the single-cell pathology landscape via reconstruction of WSI IMC images, and demonstrated the advantage of the dual-modality imaging strategy.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Adenocarcinoma/diagnóstico por imagem , Imunofluorescência , Citometria por Imagem
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 736-742, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37666764

RESUMO

Electrocardiogram (ECG) signal is an important basis for the diagnosis of arrhythmia and myocardial infarction. In order to further improve the classification effect of arrhythmia and myocardial infarction, an ECG classification algorithm based on Convolutional vision Transformer (CvT) and multimodal image fusion was proposed. Through Gramian summation angular field (GASF), Gramian difference angular field (GADF) and recurrence plot (RP), the one-dimensional ECG signal was converted into three different modes of two-dimensional images, and fused into a multimodal fusion image containing more features. The CvT-13 model could take into account local and global information when processing the fused image, thus effectively improving the classification performance. On the MIT-BIH arrhythmia dataset and the PTB myocardial infarction dataset, the algorithm achieved a combined accuracy of 99.9% for the classification of five arrhythmias and 99.8% for the classification of myocardial infarction. The experiments show that the high-precision computer-assisted intelligent classification method is superior and can effectively improve the diagnostic efficiency of arrhythmia as well as myocardial infarction and other cardiac diseases.


Assuntos
Cardiopatias , Infarto do Miocárdio , Humanos , Eletrocardiografia , Infarto do Miocárdio/diagnóstico por imagem , Algoritmos , Fontes de Energia Elétrica
15.
Front Plant Sci ; 14: 1224884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534292

RESUMO

Introduction: The difficulties in tea shoot recognition are that the recognition is affected by lighting conditions, it is challenging to segment images with similar backgrounds to the shoot color, and the occlusion and overlap between leaves. Methods: To solve the problem of low accuracy of dense small object detection of tea shoots, this paper proposes a real-time dense small object detection algorithm based on multimodal optimization. First, RGB, depth, and infrared images are collected form a multimodal image set, and a complete shoot object labeling is performed. Then, the YOLOv5 model is improved and applied to dense and tiny tea shoot detection. Secondly, based on the improved YOLOv5 model, this paper designs two data layer-based multimodal image fusion methods and a feature layerbased multimodal image fusion method; meanwhile, a cross-modal fusion module (FFA) based on frequency domain and attention mechanisms is designed for the feature layer fusion method to adaptively align and focus critical regions in intra- and inter-modal channel and frequency domain dimensions. Finally, an objective-based scale matching method is developed to further improve the detection performance of small dense objects in natural environments with the assistance of transfer learning techniques. Results and discussion: The experimental results indicate that the improved YOLOv5 model increases the mAP50 value by 1.7% compared to the benchmark model with fewer parameters and less computational effort. Compared with the single modality, the multimodal image fusion method increases the mAP50 value in all cases, with the method introducing the FFA module obtaining the highest mAP50 value of 0.827. After the pre-training strategy is used after scale matching, the mAP values can be improved by 1% and 1.4% on the two datasets. The research idea of multimodal optimization in this paper can provide a basis and technical support for dense small object detection.

17.
J Appl Clin Med Phys ; 24(8): e14084, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37430473

RESUMO

Retrograde intrarenal surgery (RIRS) is a widely utilized diagnostic and therapeutic tool for multiple upper urinary tract pathologies. The image-guided navigation system can assist the surgeon to perform precise surgery by providing the relative position between the lesion and the instrument after the intraoperative image is registered with the preoperative model. However, due to the structural complexity and diversity of multi-branched organs such as kidneys, bronchi, etc., the consistency of the intensity distribution of virtual and real images will be challenged, which makes the classical pure intensity registration method prone to bias and random results in a wide search domain. In this paper, we propose a structural feature similarity-based method combined with a semantic style transfer network, which significantly improves the registration accuracy when the initial state deviation is obvious. Furthermore, multi-view constraints are introduced to compensate for the collapse of spatial depth information and improve the robustness of the algorithm. Experimental studies were conducted on two models generated from patient data to evaluate the performance of the method and competing algorithms. The proposed method obtains mean target error (mTRE) of 0.971 ± 0.585 mm and 1.266 ± 0.416 mm respectively, with better accuracy and robustness overall. Experimental results demonstrate that the proposed method has the potential to be applied to RIRS and extended to other organs with similar structures.


Assuntos
Algoritmos , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Imagens de Fantasmas
18.
Exp Ther Med ; 25(4): 171, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37006872

RESUMO

Neurovascular compression (NVC) is the main cause of hemifacial spasm (HFS) or trigeminal neuralgia (TN), and frequently occurs at the root entry zone of cranial nerves. Microvascular decompression (MVD) is an effective surgical treatment for TN and HFS caused by NVC. The accurate preoperative diagnosis of NVC is crucial to the evaluation of MVD as an appropriate treatment for TN and HFS. Three-dimensional (3D) time-of-flight magnetic resonance angiography (3D TOF MRA) and high resolution T2-weighted imaging (HR T2WI) are used to detect NVC prior to MVD; however, this combination alone has certain disadvantages. Multimodal image fusion (MIF) may combine two or more images from the same or different modalities, allowing neurosurgeons to use the reconstructed 3D model to observe anatomical details more clearly from different perspectives. The aim of the present meta-analysis was to evaluate the effect of 3D MIF based on 3D TOF MRA combined with HR T2WI in the preoperative diagnosis of NVC, and thus to evaluate its clinical application value in the preoperative evaluation of MVD. Relevant studies available on PubMed, Embase, Web of Science, Scopus, China National Knowledge Infrastructure and the Cochrane Library, and published from the inception of each database to September 2022, were retrieved. Studies using 3D MIF based on 3D TOF MRA combined with HR T2WI to diagnose NVC in patients with TN or HFS were included. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to evaluate the quality of the included studies. The statistical software Stata 16.0 was used to perform the meta-analysis. Data extraction was performed by two independent investigators and discrepancies were resolved by discussion. Pooled sensitivities, specificities, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and the area under the receiver operating characteristic curve (AUROC) were calculated as the main summary effect size. The I² and Q-test were used to assess heterogeneity. The present search identified 702 articles, of which 7 (comprising 390 patients) fulfilled the inclusion criteria. Bivariate analysis indicated that the pooled sensitivity and specificity of 3D MIF based on 3D TOF MRA combined with HR T2WI for detecting NVC were 0.97 (95% CI, 0.95-0.99) and 0.89 (95% CI, 0.77-0.95), respectively. The pooled PLR was 8.8 (95% CI, 4.1-18.6), the pooled NLR was 0.03 (95% CI, 0.02-0.06) and the pooled DOR was 291 (95% CI, 99-853). The AUROC was 0.98 (95% CI, 0.97-0.99). The studies had no substantial heterogeneity (I2=0; Q=0.000; P=0.50). The present results suggested that 3D MIF based on 3D TOF MRA combined with HR T2WI had excellent sensitivity and specificity for diagnosing NVC in patients with TN or HFS. Therefore, this method should serve a key role in MVD preoperative evaluation.

19.
Front Robot AI ; 10: 1120357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008984

RESUMO

The concept of Industry 4.0 brings the change of industry manufacturing patterns that become more efficient and more flexible. In response to this tendency, an efficient robot teaching approach without complex programming has become a popular research direction. Therefore, we propose an interactive finger-touch based robot teaching schema using a multimodal 3D image (color (RGB), thermal (T) and point cloud (3D)) processing. Here, the resulting heat trace touching the object surface will be analyzed on multimodal data, in order to precisely identify the true hand/object contact points. These identified contact points are used to calculate the robot path directly. To optimize the identification of the contact points we propose a calculation scheme using a number of anchor points which are first predicted by hand/object point cloud segmentation. Subsequently a probability density function is defined to calculate the prior probability distribution of true finger trace. The temperature in the neighborhood of each anchor point is then dynamically analyzed to calculate the likelihood. Experiments show that the trajectories estimated by our multimodal method have significantly better accuracy and smoothness than only by analyzing point cloud and static temperature distribution.

20.
Ophthalmol Sci ; 3(3): 100292, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37025946

RESUMO

Purpose: To develop a fully-automatic hybrid algorithm to jointly segment and quantify biomarkers of polypoidal choroidal vasculopathy (PCV) on indocyanine green angiography (ICGA) and spectral domain-OCT (SD-OCT) images. Design: Evaluation of diagnostic test or technology. Participants: Seventy-two participants with PCV enrolled in clinical studies at Singapore National Eye Center. Methods: The dataset consisted of 2-dimensional (2-D) ICGA and 3-dimensional (3-D) SD-OCT images which were spatially registered and manually segmented by clinicians. A deep learning-based hybrid algorithm called PCV-Net was developed for automatic joint segmentation of biomarkers. The PCV-Net consisted of a 2-D segmentation branch for ICGA and 3-D segmentation branch for SD-OCT. We developed fusion attention modules to connect the 2-D and 3-D branches for effective use of the spatial correspondence between the imaging modalities by sharing learned features. We also used self-supervised pretraining and ensembling to further enhance the performance of the algorithm without the need for additional datasets. We compared the proposed PCV-Net to several alternative model variants. Main Outcome Measures: The PCV-Net was evaluated based on the Dice similarity coefficient (DSC) of the segmentations and the Pearson's correlation and absolute difference of the clinical measurements obtained from the segmentations. Manual grading was used as the gold standard. Results: The PCV-Net showed good performance compared to manual grading and alternative model variants based on both quantitative and qualitative analyses. Compared to the baseline variant, PCV-Net improved the DSC by 0.04 to 0.43 across the different biomarkers, increased the correlations, and decreased the absolute differences of clinical measurements of interest. Specifically, the largest average (mean ± standard error) DSC improvement was for intraretinal fluid, from 0.02 ± 0.00 (baseline variant) to 0.45 ± 0.06 (PCV-Net). In general, improving trends were observed across the model variants as more technical specifications were added, demonstrating the importance of each aspect of the proposed method. Conclusion: The PCV-Net has the potential to aid clinicians in disease assessment and research to improve clinical understanding and management of PCV. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...